
 i 

 
WAVE FORECASTS ASSOCIATED WITH HURRICANE LANDFALLS  

IN THE VICINITY OF CAPE LOOKOUT, NORTH CAROLINA 

  

 
 
 
 
 
 
 
 
 
 
 
 
NOAA Technical Memorandum NOS NCCOS #118 
 

 



 ii 

 
 
This report has been reviewed by the National Ocean Service of the National 
Oceanic and Atmospheric Administration (NOAA) and approved for 
publication.  Mention of trade names or commercial products does not 
constitute endorsement or recommendation for their use by the United States 
government. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Available at: http://www.ccfhr.noaa.gov/default.aspx#tab1  
 
 
 
 
Citation for this Report 
 
Fonseca, M.S. and Malhotra, A. 2010. Wave forecasts associated with hurricane landfalls 
in the vicinity of Cape Lookout, North Carolina. NOAA Technical Memorandum NOS 
NCCOS #118. 41 pp. 
 

 

http://www.ccfhr.noaa.gov/default.aspx#tab1�


 iii 

 
 

WAVE FORECASTS ASSOCIATED WITH HURRICANE LANDFALLS  

IN THE VICINITY OF CAPE LOOKOUT, NORTH CAROLINA 

 
 

Mark Fonseca and Amit Malhotra  
  

National Centers for Coastal Ocean Science (NCCOS) 
National Ocean Service, NOAA 
Center for Coastal Fisheries and Habitat Research 
101 Pivers Island Road 
Beaufort, North Carolina 28516-9722 
mark.fonseca@noaa.gov  amit.malhotra@noaa.gov  

NOAA Technical Memorandum NOS NCCOS #118 
2010 

 

 

United States Department of           National Oceanic and  National Ocean Service 
Commerce                                       Atmospheric Administration 
 
Gary Locke                                      Jane Lubchenco   David Kennedy 
Secretary                                          Administrator                            Acting Assistant                    
                                                                                                           Administrator 

mailto:mark.fonseca@noaa.gov�
mailto:amit.malhotra@noaa.gov�


 

 4 

Abstract 
Hurricanes can cause extensive damage to the coastline and coastal communities due to wind-

generated waves and storm surge. While extensive modeling efforts have been conducted regarding 

storm surge, there is far less information about the effects of waves on these communities and 

ecosystems as storms make landfall. This report describes a preliminary use of NCCOS’ WEMo 

(Wave Exposure Model; Fonseca and Malhotra 2010) to compute the wind wave exposure within an 

area of approximately 25 miles radius from Beaufort, North Carolina for estuarine waters 

encompassing Bogue Sound, Back Sound and Core Sound during three hurricane landfall scenarios. 

The wind wave heights and energy of a site was a computation based on wind speed, direction, fetch 

and local bathymetry. We used our local area (Beaufort, North Carolina) as a test bed for this product 

because it is frequently impacted by hurricanes and we had confidence in the bathymetry data. Our test 

bed conditions were based on two recent Hurricanes that strongly affected this area.  First, we used 

hurricane Isabel which made landfall near Beaufort in September 2003.  Two hurricane simulations 

were run first by passing hurricane Isabel along its actual path (east of Beaufort) and second by passing 

the same storm to the west of Beaufort to show the potential effect of the reversed wind field. We then 

simulated impacts by a hurricane (Ophelia) with a different landfall track, which occurred in 

September of 2005. The simulations produced a geographic description of wave heights revealing the 

changing wind and wave exposure of the region as a consequence of landfall location and storm 

intensity. This highly conservative simulation (water levels were that of low tide) revealed that many 

inhabited and developed shorelines would receive wind waves for prolonged periods of time at heights 

far above that found during even the top few percent of non-hurricane events.  The simulations also 

provided a sense for how rapidly conditions could transition from moderate to highly threatening; 

wave heights were shown to far exceed normal conditions often long before the main body of the 

storm arrived and importantly, at many locations that could impede and endanger late-fleeing vessels 

seeking safe harbor..  When joined with other factors, such as storm surge and event duration, we 

anticipate that the WEMo forecasting tool will have significant use by local emergency agencies and 

the public to anticipate the relative exposure of their property arising as a function of storm location 

and may also be used by resource managers to examine the effects of storms in a quantitative fashion 

on local living marine resources.  

 

Keywords: Hurricanes, Fetch, Emergency response, Forecasting, North Carolina, Hurricane Isabel, 

Hurricane Ophelia, Impacts, Landfall, Waves, Shorelines, WEMo. 
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Introduction 
 Hurricanes are severe storms with wind speed exceeding 62 knots or 72 mph that form in the 

North Atlantic Ocean, the Northeast Pacific Ocean or South Pacific Ocean. Hurricanes can cause 

widespread damage, a threat that is increasing with growing development of the coastal zone. 

Hurricane damages may be caused by high winds, torrential rains, floods, storm surge, high waves or 

combinations of these factors. Damage due to high winds, rains and flooding could occur hundreds of 

kilometers inland of landfall; whereas, storm surge and wave damage are restricted to the coastline and 

coastal communities. While storm surge models exist, information regarding associated wave effects in 

estuarine areas is essentially non-existent.  Moreover, many studies involving wave effects utilize 

comparatively complicated wave modeling techniques that are intimidating (if not inaccessible) to 

many ecologists, coastal resource managers and private sector (e.g. insurance companies) groups. In an 

attempt to overcome these limitations, we have developed and refined a wave exposure model 

(WEMo: Wave Exposure Model; Fonseca and Malhotra 2010) as a forecasting tool.  This model was 

originally based upon work in freshwater systems (Keddy 1982) and adapted for estuarine ecosystems 

with complex bathymetry (Fonseca et al. 2002).   

 The information presented in this study likely reinforces the experience and understanding of 

coastal residents who have lived in this area long enough to have witnessed many hurricane events. 

However, a large portion of the today’s coastal residents have not experienced such storm events and 

may not have adequate appreciation of the severity and location of associated waves and may not be 

sufficiently prepared for such an event.  Therefore, it is important to provide graphical representations 

such as these for inexperienced stakeholders in hopes of informing them of the vulnerability of both 

shoreline assets and vessels during these events.  

 In this study we focused on simulating the distribution and intensity of local wind waves that 

would be generated during hurricanes, especially at the shoreline. Our study included simulating 

alternate paths of hurricanes and presenting only the wind waves impact on our study areas during the 

course of hurricanes. We utilized WEMo to recognize the areas along shorelines where maximum 

damage could occur.  It should be noted that these computations were done in the absence of storm 

surge which could propagate waves on and inshore of the current shoreline; integration of WEMo and 

storm surge modeling represents the next generation of forecasting effort.  

 WEMo utilizes a computational approach which yields wave heights (meters; converted here to 

feet) and representative wave energy (RWE; joules m-1 wave crest) to provide a georeferenced forecast 

of both wave heights and energy distribution during a wind event.  
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Methods 
The criteria for selecting what we call the ‘test bed’ area were the landfall of recent major 

hurricanes in the area and easy availability of the required data such as bathymetry, shoreline vector 

files and hourly wind speed and direction.  For this preliminary evaluation, we chose the Beaufort area 

in North Carolina (see Figure sequence) and two hurricanes of differing intensities that occurred 

recently in hopes of using the findings of this report to reinforce the experience of people who were in 

the area for these particular storms.  We used hurricane Isabel made landfall over Core Banks moving 

southeast to Northwest over Cedar Island, North Carolina in September 20031 as a Category Two on 

the Saffir-Simpson Scale.  We also used hurricane Ophelia was a Category 1 storm that approached 

Carteret County from the west and slowly tracked along the coast before moving back out to sea 

between Capes Lookout and Hatteras2 (see Methods for more detail; additional information on these 

storms can be found at the State Climate Office of North Carolina3). Here we report on simulations of 

these storms conducted by taking wind field data at various stages of their passage and running our 

wave exposure model (WEMo) to produce geographically correct maps of wave height4

 We chose to simulate east and west landfall events using Hurricane Isabel, which actually made 

landfall to the east of Cape Lookout (which is the landfall reference point because of the location of the 

wind data collection from the National Weather Service station there; CLKN7

 distribution 

during the various stages of their passage near Cape Lookout, North Carolina.  

5

Trial Hurricanes  

).  To create the west 

landfall we simply subtracted 180 degrees from the direction associated with every wind speed 

observation.  We simulated only the actual path of Hurricane Ophelia; it was included here because of 

its comparatively greater intensity.  

The structure of a hurricane often includes an area in the middle called an ‘eye’ which is 

variable in size but often from 12-30 miles in diameter. The eye is the focus of the hurricane, the point 

about which the rest of the storm rotates and has the lowest surface pressure, while within the eye there 

can be very light winds, sometimes even calm. Surrounding the eye is the region of most intense winds 

and rainfall called the eye wall. This is generally the location within a hurricane where the most 

damaging winds are found and may range out dozens of km from the eye in all directions. Spiraling 

from the eye wall are large bands of cloud and precipitation called spiral rain or ‘feeder’ bands. This 

spiraling rotation of wind in a hurricane is in a counter-clockwise direction in the northern hemisphere. 
                                                 
1 http://csc-s-maps-q.csc.noaa.gov/hurricanes/viewer.html  
2 http://csc-s-maps-q.csc.noaa.gov/hurricanes/viewer.html  
3 http://www.nc-climate.ncsu.edu/climate/hurricane.php  
4 Heights are in meters; to convert to feet, multiply the value in meters by 3.281. 
5 http://www.ndbc.noaa.gov/station_page.php?station=clkn7  

http://csc-s-maps-q.csc.noaa.gov/hurricanes/viewer.html�
http://csc-s-maps-q.csc.noaa.gov/hurricanes/viewer.html�
http://www.nc-climate.ncsu.edu/climate/hurricane.php�
http://www.ndbc.noaa.gov/station_page.php?station=clkn7�
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Keeping this in mind, if we simulate any hurricane making landfall on our North Carolina study 

area to the east of Beaufort, the western spiral rain bands of the hurricane will produce winds from the 

north and during the course of the storm winds moves from north to southwest and then southerly 

direction. If the hurricane makes landfall to the west of the Beaufort area, the eastern spiral bands start 

hitting that area with the winds from south and during the course of storm move from south to 

northeast and north directions. Thus, landfall location can dramatically reverse the sequence and 

direction of wind effects.  

As mentioned previously, the two named storms used in this study were 1) Isabel in September 

2003 (maximum sustained winds at Cape Lookout were 52 knots [60 mph]) and, 2) Ophelia in 

September 2005 (maximum sustained winds at Cape Lookout were 68 knots [78 mph]).  It is important 

to note that the maximum waves generated by Isabel in our simulations reached ~1.15 m (~3.8 ft) 

while for Ophelia wave heights reached ~1.7 m (~5.6 ft). Although the forecast wave heights given 

here may appear to be modest, it has been our experience that wave heights (like currents speeds) are 

frequently overestimated by the casual observer, especially in sounds and bays (as opposed to the 

ocean) as reported here.  Nonetheless, the ~1-2 m (3 to 6.5 ft) wave heights described here represent 

extremely dangerous conditions especially in the shallow sounds and bays where shoaling and wave 

breaking occur.  Also, the reader should keep in mind that excluding hurricanes, the top 5% of wind 

wave heights in the bays and sounds rarely exceed 0.6 m (2 ft; except in channels where opposing 

wind and tide can cause increased wave heights) so that these wave heights are much greater than 

normally experienced.   Moreover, wave energy – and the damage that a wave can inflict –does not 

increase linearly with wave height, but increases as the square of wave height.  Therefore, while wave 

height was predicted to be only ~30% greater during Ophelia as compared with Isabel, the wave 

energy was predicted to be ~ twice that forecast for Isabel.  

Following are the brief descriptions of the storms, edited from National Hurricane Center, 

NOAA (http://www.nhc.noaa.gov/pastall.shtml ): 

Hurricane Isabel was a long lived storm from 6th to 19th September 2003 that made landfall 
near Drum Inlet on the Outer Banks of North Carolina as a Category 2 hurricane on the Saffir-
Simpson Hurricane Scale. Isabel is considered to be one of the most significant storms to affect 
Eastern North Carolina since Hurricane Hazel in 1954. The highest observed wind on land was 
sustained at 79 knots [69 mph) with a gust to (87 knots [100 mph) at an instrumented tower 
near Cape Hatteras, North Carolina on 18th September. The lowest pressure observed was 962.8 
(mb) from a tower in Atlantic Beach, North Carolina. Isabel produced storm surges of 1.8-2.5 
m above normal tide levels near the point of landfall along the Atlantic Coast of North 
Carolina. In North Carolina estuaries, storm surge values were generally 4-6 ft above normal 
tide levels over the eastern portions of the Pamlico Sound and ~6-10 ft above normal tide 
values in western end of Pamlico Sound with a maximum value of 10.5 ft reported on the 
Neuse River in Craven County. 

http://www.nhc.noaa.gov/pastall.shtml�
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Hurricane Ophelia was a category 1 hurricane on the Saffir-Simpson Hurricane Scale that 
brushed the North Carolina Outer Banks, its center staying just offshore from the coast. Ophelia 
moved generally east-northeastward parallel to the North Carolina coast for much of 14-15 
September 2005, with the northern eye wall passing over the coastal area from Wilmington to 
Morehead City.  During this time, the hurricane reached its peak intensity of 75 knots (86 mph) 
although the strongest winds remained offshore. Ophelia turned eastward late on 15 September 
while passing south of Cape Hatteras.  The strongest reported winds were at Cape Lookout, 
which reported 2-min average winds of 65 knots or 74 mph (9.8 m elevation) on September 
14th with a gust to 80 knots or 91 mph.  There was an unofficial report of a gust of 90 knots or 
104 mph in Davis. Ophelia caused storm surges of 4 to 6 ft above normal tide levels in the 
Pamlico Sound including the lower reaches of the Neuse, Pamlico, and Newport Rivers.  
Surges of 4 to 6 ft also occurred along the open coasts in Onslow and Carteret counties.  Storm 
surges of 3 to 4 ft above normal tide levels were common elsewhere along the affected areas of 
the North Carolina coast.  Ophelia also caused tides of 1 to 2 ft above normal along the Florida 
coast 
 

As with any disturbance event, the extent and duration are important factors determining the 

magnitude of the event.  For this study, the passage of the storm was considered as the time from when 

winds exceeded tropical storm velocities (~34 knots or ~39 mph) to the time when winds dropped 

below that level.  Wind data for these storms were obtained from National Data Buoy Center (NDBC), 

NOAA station Cape Lookout, North Carolina6

Assumptions and limitations 

. This site was the closest to the hurricane approach path 

and had the most reliable data available in the area. Hourly data were downloaded for the above time 

period and were grouped into nine ~three hour periods (Table 1) and WEMo was run for the entire area 

at points gridded out at 100 m (328 ft) apart.  

Following are the assumptions and limitations for techniques used in this study. 

 Wind data were assumed to be equal over the whole study area due to lack of detailed, spatial 

availability. 

 Bathymetry is of good quality. 

 Bathymetry used for the study was at mean low tide and the study does not include the effects 

of high tide and storm surge; storm surge and a high tide will result in wave effects being 

propagated inland of the shoreline used in this study; this makes the wave height results of 

these simulations highly conservative. 

 Classical diffraction and refraction (the ‘wrapping around’ or bending of waves as they pass 

points of land or very shallow water) effects of waves were not considered in WEMo, which 

could be substantial for some areas close to shore; the model overcomes this limitation through 

                                                 
6 http://www.ndbc.noaa.gov/station_page.php?station=clkn7  

http://www.ndbc.noaa.gov/station_page.php?station=clkn7�


 

 9 

the density of the point computation approach and other aspects of the modeling including use 

of effective fetch (a mathematical averaging of fetch [downwind distance over which the wind 

blows over water without interruption by land] to account for shoreline shape effects).   

Landfall to the East: Isabel 
Key areas that will be referenced in the landfall narratives are shown in Figure 1. The first 

model simulation (Figure 2) included the time from 00:00 hrs on September 18, 2003 to 03:06 hrs on 

September 18; winds were slightly above the annual average and from the North (note that the average 

monthly wind speed at Cape Lookout was 12.1 knots (14 mph).  From 0306h to 0609h winds 

continued from the north with small increase; (Figure 3) wave height began to build in the open parts 

of the sounds especially against the sandy shoals that extend westward from the sound side of Core 

Banks and against the sound side of Bogue Banks. From 0609h to 0912h (Figure 4) winds were at 

~75% of their maximum and wave height rapidly increased in the central basins of Core Sound and 

North River; the north facing shorelines of Morehead City abutting the Newport River as well as the 

sound side of Bogue Banks experienced intensified waves.  The State Port basin at Morehead City, 

particular the docks to the north of the Morehead City – Beaufort high rise bridge would also 

experience intense wave action.  From 0912h to 1215h (Figure 5) the patterns of wave height 

distribution changed little and with little change; note that these effects at moderate to high levels of 

wave action had now persisted for over three hours. The next three hours from 1215h to 1518h (Figure 

6) signaled the beginning of the rapid change in wind direction that accompanies passage of the 

storm’s eye with some minor diminishment of wave height but with little change in its distribution 

meaning that wave battering for these areas has now persisted for almost six hours. Figure 7 from 

1518h to 1821h shows the resulting rapid change in wave height and distribution as the eye passes; 

winds are now from the west-southwest and at ~65% of peak storm wind speeds.  Wave height has 

diminished in Core Sound but with the wind swinging to the southwest, wave height intensified at 

Beaufort Inlet.  Waves have dramatically diminished on the sound side of Bogue Banks and are now 

building on the sound side of Morehead City.  Figure 8 from 1821h to 2100h shows the continuing 

diminishment of the wind speeds but with continued westerly component; the Morehead City shoreline 

continued to experience lowered but moderate wave height. Figure 9 from 2100h to 0003h on 

September 19th indicate that waves are still present along the Morehead City shoreline and in the 

central basins of Core Sound, but at much lower levels, comparable to commonly observed strong 

summertime (sea breeze) condition; waves at Beaufort Inlet remain at elevated intensity. Figure 10 

from 0003h to 0306 shows the winds becoming more southerly with increased exposure of the sound 
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side portions of the mainland shoreline of Core Sound; again these conditions are comparable to a 

strong summertime event but unlike that type of event, this initiated in the early morning hours.  

Landfall to the West : Isabel’s wind data reversed 
Our simulations of what might have occurred had Isabel made landfall to the west of Cape 

Lookout begin with Figure 11.  In the early morning hours of September 18, over 12h before the eye 

arrived, southerly winds measurably stronger than a strong summertime sea breeze would already be 

affecting the south-facing (sound-side) shoreline of Morehead City and the mainland shoreline of Core 

Sound.  Also at this time waves at Beaufort Inlet would already had become comparatively (compared 

to the peak of the storm) high, a condition that might not be anticipated by late-arriving vessels seeking 

safe harbor.  From 0003h to 0609h wave intensity has begun to rise sharply at Beaufort inlet and along 

the mainland shoreline of Core Sound (Figure 12).  Over the next three hours (0609-0912h) wave 

height has in many areas reached over 80% of the maximum conditions (Figure 13); the Morehead 

City shoreline, south-facing shorelines of the Newport River (potentially impeding and endangering 

vessels attempting to flee up the Atlantic Intracoastal Waterway), parts of Harker’s Island and the 

mainland shoreline of Core Sound, especially parts of Marshallberg, the entrance to Jarrett’s Bay, and 

Sea Level would now be under extreme wave conditions.  The next two Figures (14 and 15) indicate 

continued, high wave height along the aforementioned shorelines with only a slight reduction in 

intensity in the upper Newport River towards 1500h; extreme wave battering of these shorelines has 

now been ongoing for nearly nine hours.  Between 1518h and 1821h (Figure 16) conditions begin to 

abate but still wave energies are present at the Core Sound communities in the top ~75% of the storm’s 

maxima. However, between 1821h and 2100h (Figure 17) the eye has passed on winds are now 

approaching from the east-northeast at much reduced velocities; some minor wave height may now be 

experienced on the sound side of Bogue Banks but the Core Sound condition would have attenuated 

dramatically.  Figures 18 (September 19th 0300h)  and 19 ( to 0306h) winds continue at moderated 

levels with only the central basins and sand shoals of Core Sound experiencing continued (but much 

reduced from 6h previous) wave action.  

Landfall to the West and offshore: Ophelia 
Simulations for Hurricane Ophelia began at ~0900h to 1214h on September 14, 2005 (Figure 

20); winds were from the southeast and moderate levels causing wave heights along exposed 

shorelines not unlike that of a strong summertime sea breeze, almost 12h before the storm eye arrived.  

From 1214h to 1618h (Figure 21) winds continued from the east-southeast with some intensification 

especially along the south facing shoreline of Morehead City and the mainland shorelines of Core 

Sound.   From 1618h to 1820h (Figure 22) wave height from the southeast has continued to build with 



 

 11 

increasing and sustained winds, but would now have become noticeably stronger in the northwestern 

portions of the Newport River, North River (again, potentially impeding and endangering vessels 

attempting to flee up the Atlantic Intracoastal Waterway) and the entrance to Jarrett’s Bay; some 

localized high wave height points can be seen building also off the southwestern end of Harker’s Island 

and at Marshallberg point. From 1820h to 2022h the previous trend has continued with increased 

intensity also in the Port of Morehead City turning basin (Figure 23); conditions particularly at 

locations such as Sea Level, Thorofare Bay and Cedar Island Bay have begun to deteriorate sharply 

with wave energies in some cases reaching ~half of the storm’s maxima. From 2022h to 2200h (Figure 

24), many areas such as the Morehead City shoreline, the upper Newport River and the Core Sound 

communities are all experiencing near-maximum wave energies.  From 2200h on September 14 to the 

early hours of September 15, wave heights have reached their maximum prior to the passage of the eye 

(Figure 25); shorelines have now been battered for over 12h, with the last 4-6h being at extreme levels. 

From 0002h to 0204h on the 15th (Figure 26) wind direction has shifted rapidly with the passage of the 

eye, coming from nearly due east with concomitant reductions in wave height regionally except for 

continued intense pockets at locations such as Sea Level, Thorofare Bay and Cedar Island Bay.  

Because Ophelia lingered in many ways unchanged for so long, we will now skip some time periods in 

our simulation.  Jumping ahead to the time from ~0600h to 0810h (Figure 27) wave energies have 

diminished considerably from ~8h previous but waves have begun to shift southerly along many 

shorelines such as the Newport River and also to the central basin of the North River and onto the 

sandy shoals that extend westward from the sound side of Core Banks. Jumping ahead to the period 

from ~0800h to 1012h (Figure 28) winds have now set up from the north-northwest again at increased 

velocities, bringing high wave height to the sound side of Bogue Banks, Crab Point on the Newport 

River side of Morehead City and across to the Deerfield Shores area of Beaufort; wave height is also 

now intensifying along the sandy shoals behind (extending westward from)  Core Banks and near 

Bottlerun Point on the sound side of Shackleford Banks, including a point of wave concentration 

covering the Barden’s Inlet Channel.  

Conclusions 
Wind waves in shallow sounds and bays can become highly destructive during major storms; 

here our model simulations forecast wave heights reaching ~5.5 ft (1.7 m) in the most exposed areas of 

the bays and sounds for two storms in the lower range of the Saffir-Simpson scale.  As we pointed out, 

wave energy and thus, its destructive potential increases as the square of wave height meaning that 

larger storms (e.g., Category 3 and beyond) have the potential to generate disproportionately larger 

waves and destructive impacts.   
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We have shown that WEMo is a potentially important tool to map the distribution of wave 

energy during the passage of coastal storms, such as hurricanes. The change in wave height and energy 

distribution provides guidance to property owners and emergency managers as to where areas of 

concern may develop during the different landfall locations and intensities of storms.  This exercise 

serves also to demonstrate the potential not only for specific areas of concern along inhabited 

shorelines, but also the potential danger of rapidly shifting loci of wave heights and their associated 

energy.  Wave heights were shown to far exceed normal conditions and often long before the main 

body of the storm arrived. Dangerous wave conditions were shown to occur at many locations that 

could impede and endanger late-fleeing vessels seeking safe harbor.  

Future work will include utilizing storm surge forecasting along with WEMo so that the impact 

of wind wave events may be forecast as the water level rises, thereby introducing wave effects into 

areas landward of the shoreline; a scenario that would benefit from such spatially explicit information.   

In order to forecast actual impacts on property or ecological resources, WEMo results will likely be 

used to best effect when modeled with additional factors. For example, the effects of disturbance 

events are typically characterized by extent, severity, duration, and frequency.  While extent and 

severity are embedded in the wave height value for a given event, duration of the event is not, and may 

be a powerful explanatory variable when joined with wave height to examine the response of resources 

to a storm event.  
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Table 1.  Chronology of storm simulations for each hurricane along with Julian Day 
conversion which is the x-axis on the inset wind – stick diagram in Figures 2-28.  

Hurricane Isabel 

 

Hurricane Ophelia 

Day and hour 
Julian day 
conversion Day and hour 

Julian day 
conversion 

9/18 0306 261.125 9/14 1214 257.5 
9/18 0609 261.25 9/14 1618 257.66 
9/18 0912 261.375 9/14 1820 257.75 
9/18 1215 261.5 9/14 2022 257.83 
9/18 1518 261.625 9/14 2200 257.92 
9/18 1820 261.75 9/14 0002 258 
9/18 2100 261.875 9/14 0204 258.1 
9/19 0003 262 9/14 0810 258.33 
9/19 0306 262.125 9/14 1012 258.42 
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Figure 1.  Key place names described in the landfall narratives.  
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Figure 2. Simulation for hurricane Isabel, east landfall, September 18 2003: 0306h.  
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Figure 3. Simulation for hurricane Isabel, east landfall, September 18 2003: 0609h. 
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Figure 4. Simulation for hurricane Isabel, east landfall, September 18 2003: 0912h. 
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Figure 5. Simulation for hurricane Isabel, east landfall, September 18 2003: 1215h. 
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Figure 6. Simulation for hurricane Isabel, east landfall, September 18 2003: 1518h. 
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Figure 7. Simulation for hurricane Isabel, east landfall, September 18 2003: 1821h. 
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Figure 8. Simulation for hurricane Isabel, east landfall, September 18 2003: 2100h. 
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Figure 9. Simulation for hurricane Isabel, east landfall, September 19 2003: 0003h. 
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Figure 10. Simulation for hurricane Isabel, east landfall, September 19 2003: 0306h. 
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Figure 11. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 0003h. 
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Figure 12. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 0609h. 
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Figure 13. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 0912h. 
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Figure 14. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 1215h. 
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Figure 15. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 1518h. 
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Figure 16. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 1821h. 
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Figure 17. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 2100h. 
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Figure 18. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 19 2003: 0003h. 
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Figure 19. Simulation for hurricane Isabel, by inverting the actual east landfall to create a west 
landfall, September 18 2003: 0306h. 
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Figure 20. Simulation for hurricane Ophelia with west landfall, September 14, 2005: 1214h. 
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Figure 21. Simulation for hurricane Ophelia with west landfall, September 14, 2005: 1618h. 
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Figure 22. Simulation for hurricane Ophelia with west landfall, September 14, 2005: 1820h. 
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Figure 23. Simulation for hurricane Ophelia with west landfall, September 14, 2005: 2022h. 
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Figure 24. Simulation for hurricane Ophelia with west landfall, September 14, 2005: 2200h. 
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Figure 25. Simulation for hurricane Ophelia with west landfall, September 15, 2005: 0002h. 
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Figure 26. Simulation for hurricane Ophelia with west landfall, September 15, 2005: 0204h. 
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Figure 27. Simulation for hurricane Ophelia with west landfall, September 15, 2005: 0810h. 
  



 

 42 

 
Figure 28. Simulation for hurricane Ophelia with west landfall, September 15, 2005: 1012h. 
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